Advanced Nuclear Fuel Cycle Program

Quarterly Review Meeting

TRISO Fuel Development Status

Dave Williams, ORNL

January 24 2003

Albuquerque NM

1. BACKGROUND

GA Deep Burn Transmutation Integrates Series I and II

Deep Burn Fuel Plan Integrated AFC Goals with NP-2010

(Multicell Screening Tests)

Driver Fuel (DF) Qualification

(Proof of Principle, Performance Tests)

LWR TRU Waste TRISO Fuel Development Program

Demonstrator Construction

MHR Development Program

Demonstrator Testing, Operation

(U fuel base + DF, TF, other production test elements

2. STATUS REPORT

Transmutation Fuel Process Parallels Established Uranium Fuel Fabrication

Kernels by Gel-Precip.

Coating by CVD

Compaction by Compression Molding

Kernel

Coating

Compact

Nature		Similar to U-process	Similar to U-Process	Identical to U-process
State of Develop	Pu	Lab-scale	(add ZrC)	
	Am- Cm	Related work (resin-loading)	(add ZrC)	

Coating and Kernel Labs Established

FY02: Uranium Kernels

Surrogate Coating

U-Coating

Development Path
Surrogate --> Uranium --> Pu/Np --> Am/Cm

Uranium Kernels and Surrogate TRISO made to Re-establish Fuel Fabrication Standards

FY02: HfO₂ for dense kernels

ZrO₂ SiC-TRISO (HfO2 also coated)

300 μm sintered

30 coating runs

 UO_2 kernels

1 kg produced (new synthesis)

1 kg produced

Fuel Design Review Concludes: No Chemical Barriers for Pu-Np-Am Fuels ORNL/TM-2002/133

- Am-volatility is low enough for oxide fabrication.
- ZrC probably needed for Deep Burn Transmutation:

ZrC barrier layer to resist "noble metal" attack:
Pd, Ag have much higher yields for MA (> 10X U-235)
ZrC is more resistant to Pd-attack than SiC
Higher temperature, burnup releases more Ag/Pd from kernel

ZrC in the buffer layer prevents CO generation:
lowers gas pressure - important for high burnup
prevents kernel migration coating failure
ZrC buffer layer demonstrated in UO₂* design

ZrC is much more refractory than SiC

ZrC Coating is likely needed for Higher Temperature GENIV Applications

TRU activities: Kernels Lab and Resin-loading

- Electrolytic dissolution and solution preparation established in existing gloveboxes.
- TRU materials processed for dispersion fuel:
 - 50 grams of Am converted to resin-loaded kernels in TRU hotcells
 - 70 grams of Pu/Np dissolved
- Dispersion Fuel Activity halted in September

3. 5-Year Strategy

TRISO 5-Year Plan Must Accommodate Change

- Funds for R&D are limited
 - remote and high-alpha work is expensive
 - TRISO fuel fabrication is relatively complex
- VHTR, not NP-2010, is the relevant technology partner
 - There is a need to coordinate with GENIV and AGR
 - There is a need to coordinate with the Int'l Community
- A staged development is needed to meet AFC goals:
 - These recent changes require a different technical strategy

Technical Strategy –

- Complete high-alpha kernel line for Pu/Np, and use in conjunction with existing radiochemical labs.
- Kernel: use simple oxides works for all actinides, removes cost for development of oxy-carbides
- Coatings: work on ZrC
 - first as a getter layer
 - then as a barrier layer (to replace ZrC).
- Use out-or-reactor tests to screen candidates

Experimental Strategy – "Doing more with less (1)"

Sparse TRISO: seeded fabrication of TRISO by addition of small amounts of TRU to the coater charge

"Doing more with less (2)"

- Use multicell capsule, compacting, and fuel characterization capability being developed by the AGR program
- Coordinate Irradiation and PIE with ongoing DOE activities (AGR, NERI, VHTR)
- Explore Opportunities for International Collaboration (GIF)

Draft Schedule Meets 2007 Evaluation Requirement

4. FY03 Plans

FY03 Scope Centers on Advanced Coatings

- Major activity is Advanced Coatings focus is on ZrC
 - (a) a getter layer
 - (b) a barrier layer
- Work on Kernels will include synthesis to make Uranium Carbides and Nitrides for I-NERI
- Work on Fuel Characterization is primarily to support work with ZrC
- Work on Fuel Materials Analysis is to support out-ofreactor test-planning, and fuel development planning

Proposed FY03 Milestones in Review

- Fabricate uranium carbide and nitride kernels for out-ofreactor evaluation
- Fabricate TRISO coated particles with advanced coatings (ZrC) for out-of-reactor evaluation
- Fuel Characterization Requirements Report
- Advanced Coating Characterization Report
- Experimental Plan for Out-of-Reactor Investigations
- Completion/Stabilization of TRU glovebox activities